Apuntes Geología
S. Griem-Klee (2016)

Apuntes Exploraciones Mineras

Reducción e interpretación de los datos

www.geovirtual2.cl
Métodos de Exploración y Prospección

Capitulo
5.
3

linea 150

Contenido página

 





 








5.3 Reducción e interpretación de los datos


5.3 Reducción e interpretación de los datos

Efecto magnético vertical sobre cuerpos de modelo polarizados verticalmente y enterrados en el subsuelo

A través de algunas formulas relativamente sencillas se puede describir el efecto magnético vertical de cuerpos de modelo verticalmente polarizados y enterrados en el subsuelo. Los diagramas siguientes presentan el efecto magnético vertical ejercido por distintos cuerpos y mensurables en la superficie terrestre en función de la distancia horizontal. Los cuerpos tienen distintas composiciones (basalto y granito), diferentes contenidos en magnetita (basalto de 7% de magnetita y granito de 1,5% de magnetita), diferentes radios (r = 250m y r = 100m) y están situados en distintas profundidades (p = 400m y p = 150m). Los dos diagramas superiores muestran el efecto magnético vertical de cuerpos esféricos de la misma dimensión (r = 250m), situados en la misma profundidad (p = 400m), pero de distintas composiciones y distintos contenidos en magnetita. Las curvas resultantes tienen la forma de una campana (curva de Gauss), el mismo ancho (= distancia entre los flancos) pero diferentes máximos. Al cuerpo basáltico corresponde una curva con un máximo mucho mayor en comparación a la curva generada por el cuerpo granítico. La diferencia en los máximos de las curvas se debe a la susceptibilidad magnética más alta del cuerpo basáltico con un contenido de 7% en magnetita en comparación a aquella del cuerpo granítico, que contiene solo1,5% de magnetita. SLICHER & STEARN (1929) mencionan las susceptibilidades magnéticas siguientes para basaltos y granitos:

tabla magnetometría
SLICHER, L.B. & STEARN, H.H. (1929): Geophysical Prospecting. - Am. Inst. Mining Met. Engrs., Trans. en DOBRIN (1988).



Exploraciones Mineras Exploraciones Mineras

Los próximos dos diagramas muestran, que un cuerpo situado en alta profundidad con respecto a la superficie terrestre produce un efecto magnético vertical menos intenso en comparación a un cuerpo de la misma dimensión y composición ubicado en menor profundidad.


Exploraciones Mineras Exploraciones Mineras - magnetometría


A partir de las curvas de Gauss (de forma de campana), que caracterizan el efecto magnético vertical de algunos cuerpos polarizados verticalmente y enterrados como de los cuerpos esféricos, cilíndricos y de placas de extensión vertical mayor en comparación a su extensión horizontal se puede deducir parámetros como la potencia del cuerpo y la profundidad de su limite superior.

● En el caso de una placa de extensión horizontal relativamente alta como un manto por ejemplo la semianchura de la curva correspondiente a su efecto magnético vertical indica la potencia horizontal de la placa.
● En el caso de una placa de extensión vertical mayor como un dique por ejemplo la semianchura media de la curva correspondiente a su efecto magnético vertical da la profundidad del límite superior de la placa.



Efecto magnético total sobre cuerpos magnéticos enterrados en el subsuelo

Hoy día en la prospección magnética comúnmente se miden la componente total del campo magnético. En el caso de un cuerpo magnético enterrado en el subsuelo la componente total del campo magnético se constituye de las magnitudes correspondientes al campo geomagnético y al campo magnético anómalo generado por el cuerpo magnético enterrado y superponiendo el campo geomagnético. El efecto magnético total ejercido por este cuerpo enterrado en el subsuelo y mensurable en la superficie depende de la dirección del campo geomagnético en el lugar de observación y de la imantación inducida en este cuerpo paralela al campo geomagnético. Los modelos numéricos de los datos de la intensidad total se diseñan usualmente por medio de computadores. Dependiendo de los problemas geológicos en cuestión y de la capacidad del computador disponible se realiza modelos de dos, de dos y media y de tres dimensiones.


Diseño de un mapa de isolíneas

Procedimiento recomendable para diseñar un mapa de isolíneas o de líneas de isoflujo magnético modificado según un propósito de ARONEC, W de Exploration Geophysics Field Manual, Cambrian College, Spring (1982).





Características de las isolíneas/líneas de isoflujo magnético

● Una isolínea es la línea, que une varios puntos del terreno (varias estaciones de observación) del mismo valor o de la misma intensidad.

● El intervalo entre dos isolíneas es la diferencia en el valor o en la intensidad entre dos isolíneas adyacentes.

● El espaciamiento de las isolíneas es una medida del gradiente. Las isolíneas con espaciamiento pequeño y denso (espaciadas densamente) expresan un gradiente alto, las isolíneas con espaciamiento grande entre sí representan un gradiente pequeño (véase fig. A). En este contexto gradiente se refiere a una variación de un valor de una intensidad con respecto a la distancia.

● Las isolíneas cerradas ilustran extremos como altos (los valores incrementan hacia el centro de la forma cerrada de las isolíneas) y bajos (los valores decrementan hacia el centro de la forma cerrada de las isolíneas). Los bajos se destacan por medio de dientes dirigidos hacia el centro de la forma cerrada.

● Una isolínea no puede cruzar otra.

Isolineas magnéticas


En un mapa de isolíneas se emplea tres tipos de líneas:

● Una línea puntada ancha para un intervalo de 5000gammas (véase fig. B).
● Una línea sólida ancha para los intervalos intermedios de 1000gammas.
● Una línea sólida fina para los intervalos de 200gammas.

Isolineas magneticas

En el caso de una distribución regular de los intervalos no se debe asignar a cada línea su valor.

Se destaca las líneas de valores más altos y más bajos. En el caso de los bajos se marca las líneas con dientes dirigidos hacia la dirección, en que tienden a bajar los valores (véase fig. C).

Isolineas magnéticas

Construcción de una isolínea por interpolación

La construcción de una isolínea por interpolación está ilustrada en la figura D.

Isolineas magneticas


El intervalo mínimo razonable, que se emplea en el mapa depende de los factores siguientes:

● La diferencia en el valor o la intensidad de dos líneas adyacentes debe sobresalir el error inherente en los datos.
● La escala.
● Los gradientes máximo y mínimo del área en cuestión.

Por ejemplo se mide con un magnetómetro con una precisión de 20gammas a lo largo de perfiles paralelos con espaciamiento de 50m con respecto a las direcciones Norte y Este y en un área con un gradiente medio de 100gammas/100m. Se presenta los resultados en un mapa de escala 1:10000. ¿Qué intervalo entre dos isolíneas usted elegiría? Repuesta: 50gammas o más. Con un intervalo de 50gammas y un gradiente de 100gammas/100m se obtiene 2 isolíneas en 1cm de la mapa (= 100m de la naturaleza). Por ejemplo se mide con un magnetómetro con una precisión de 20gammas a lo largo de perfiles paralelos con espaciamiento de 50m con respecto a las direcciones Norte y Este y en un área con un gradiente medio de 200gammas /100m. Se presenta los resultados en un mapa de escala 1:10000. ¿Qué intervalo entre dos isolíneas usted elegiría? Repuesta: 100gammas o más, para evitar un espaciamiento demasiado denso. Con un intervalo de 100gammas y un gradiente de 200gammas /100m se ubican 2 isolíneas en 1cm de la mapa (=100m de la naturaleza). Por ejemplo se mide con un magnetómetro con una precisión de 20gammas a lo largo de perfiles paralelos con espaciamiento de 50m con respecto a las direcciones Norte y Este y en un área con un gradiente medio de 20gammas/100m. Se presenta los resultados en un mapa de escala 1:100000. ¿Qué intervalo entre dos isolíneas usted elegiría? Repuesta: 100gammas o más, para evitar un espaciamiento demasiado denso. Con un intervalo de 100 gammas y un gradiente de 20gammas/100m 2 isolíneas caen en 1 cm de la mapa (=1km de la naturaleza).

En las exploraciones mineras se cuenta con instrumentos apenas ajustados y errores humanos resultando en errores mínimos de 20 a 40gammas. Por esto la diferencia de la intensidad entre dos isolíneas debería ser igual o mayor a 100gammas.




Propuestas prácticas para el diseño de un mapa de isolíneas magnéticas

Un mapa de isolíneas magnéticas debe ser construido nítidamente y claramente y simplificado para entregar la cantidad más alta posible de informaciones sin generar confusiones o ambigüedades. Si el mapa de anomalía es bien legible e interpretable en ausencia de isolíneas intermedias, se recomienda no presentar las isolíneas intermedias. En el caso que las distancias entre las isolíneas intermedias son tan pequeñas que no se puede distinguir una de la otra y que no se puede identificar sus valores, se debe renunciar a las isolíneas intermedias.


Diseños de una anomalía

En la exploración magnética realizada en la corteza terrestre generalmente se mide continuamente y completamente o se mide a lo largo de un perfil y en perfiles paralelos con un espaciamiento constante, es decir se mide en intervalos regulares. En el último caso la posición y la forma de una anomalía magnética levantada se aproxima a la posición y la forma de la anomalía real. El procedimiento de acercarse a los parámetros reales de una anomalía o es decir de diseñar una anomalía puede ser mecánico empleando partes proporcionales o por interpolación o extremadamente interpretativo utilizando isolíneas paralelas o equidistantes. A menudo la diferencia entre estos dos tipos de diseñar una anomalía es graduada. Utilizando isolíneas paralelas y equidistantes se debe enfocar su atención a la existencia de anomalías atractivas no completamente definidas por la información disponible, que se basa en una red de estaciones de observación con cierto espaciamiento. Por medio de otros datos geofísicos y/o geológicos se podría comprobar la interpretación de los datos magnéticos. Tales evaluaciones sucesivas se aplican comunmente en la prospección geofísica minera.



Ejemplos de anomalías

En el caso que no se puede definir claramente la forma de una anomalía magnética y en presencia de conductividad ya detectada y diseñada se orienta el eje de la anomalía magnética en la misma dirección como el eje de la anomalía conductiva o como otras estructuras geofísicas o geológicas ya conocidas.

Las estructuras causantes de anomalías magnéticas a menudo están paralelas entre sí como un sistema de diques paralelos con alto contenido en magnetita por ejemplo. Frecuentemente se puede localizar una anomalía conductiva al mismo lugar, en la misma orientación y de forma parecida como la anomalía magnética. En el caso de varias estructuras paralelas causantes de anomalías magnéticas se trata distinguir estas y diseñarlas separadamente.

En el caso que los conductores eléctricos se ubican en los flancos de una anomalía magnética, se distingue entre la anomalía magnética central y las anomalías magnéticas asociadas con anomalías conductivas formando los flancos de la anomalía magnética central. Por ejemplo un cuerpo de peridotita (roca plutónica de olivino y piroxeno) está rodeado por sulfuros de alto contenido en pirotina (Fe1-xS). El cuerpo de peridotita genera la anomalía magnética central y los sulfuros producen las anomalías magnética y conductiva ubicadas en el hombro de la anomalía magnética central.


En áreas de gradientes de intensidad magnética bajos se trata de delinear tendencias lógicas delineando la anomalía a partir de los valores más altos presentes. Este método se emplea especialmente en el caso que un cuerpo conductivo está orientado en la misma dirección como el alto magnético y se utiliza isolíneas intermedias.


Ejemplos de aplicaciones del método magnético

Una aplicación geológica es el levantamiento de tendencias estructurales del basamento cubiertas por una capa de sedimentos sueltos o compactados y el levantamiento de rocas ígneas y metamórficas ubicadas en una profundidad somera cubiertas por la vegetación o una capa aluvial. Una lineación delineada por los contornos de isolíneas magnéticas puede reflejar por ejemplo el rumbo del eje de un cuerpo intrusivo longitudinal o los planos de fallas grandes en la topografía del basamento. En un área caracterizada por una geología superficial bien expuesta se puede elaborar un mapa geológico con un esfuerzo mínimo, de modo que se combinan los datos geológicos obtenidos de algunos pocos afloramientos distribuidos irregularmente en terreno con las tendencias aeromagnéticas observadas. En este caso los datos magnéticos pueden justificar una interpolación de los pocos datos geológicos.

Sin informaciones adicionales normalmente no es posible distinguir si una anomalía magnética observada se debe a un relieve estructural o a una variación litológica lateral.

Principalmente el método magnético se aplica en las exploraciones mineras con los objetivos siguientes:

● La búsqueda de minerales magnéticos como magnetita, ilmenita o pirotina.
● La localización de minerales magnéticos asociados con minerales no magnéticos, de interés económico como minerales indicadores.
● La determinación de las dimensiones (tamaño, contorno, profundidad) y estructuras de zonas mineralizadas cubiertas por capas aluviales o vegetales.


Exploración magnética para menas de Fe

La mayoría de la producción de Fe (aproximadamente 90%) se explota de depósitos de origen sedimentario de composición primaria oolítica y silícea. Lo demás se extrae de depósitos de origen magmático con minerales de Fe de origen magmático o con minerales de Fe residuales después de la meteorización de las demás componentes de las rocas magmáticas.

Los depósitos de Fe asociados con rocas magmáticas frecuentemente están caracterizados por un cociente magnetita/hematita alta y en consecuencia pueden ser detectados directamente por las mediciones magnéticas.

Las taconitas son depósitos de Fe de origen sedimentario. Su carácter magnético depende de su estado de oxidación, puesto que la magnetita se descompone por la oxidación. Las taconitas oxidadas son mucho menor magnéticas en comparación con las taconitas no oxidadas. Con el método magnético se podían ubicar las zonas de taconitas no o poco oxidadas, que por su procesamiento más fácil son más favorables para la explotación.

Por el método magnético se puede localizar depósitos de Fe cubiertos por otras formaciones geológicas y situados en cierta profundidad en la corteza terrestre como por ejemplo los rellenos hidrotermales de fracturas cerca de Pea Ridge Mountain, Missouri, que se descubrieron por medio de sondeos realizados a lo largo de una anomalía magnética de forma longitudinal.


Exploración magnética para otros minerales

Por su asociación con minerales magnéticos como magnetita y pirotina minerales no magnéticos como los metales básicos níquel, cobre y oro por ejemplo pueden ser detectados por el método magnético. Frecuentemente se emplea el método magnético en la exploración para diamantes, que ocurren en chimeneas volcánicas de kimberlitas o lamprófidos . Por su contenido en magnetita e ilmenita se puede localizar estas chimeneas con el método magnético. Se han encontrado las chimeneas de kimberlitas en los Estados Unidos, en la república soviética antigua y en Africa del Sur, Este y Oeste.



Exploración magnética para hidrocarburos

En la búsqueda de petroleo y gas natural se emplea el método magnético para determinar la geometría (extensión, dimensión y potencia) de cuencas sedimentarias, que pueden atrapar los hidrocarburos. En base de los resultados magnéticos se puede planificar y colocar más precisamente los perfiles sísmicos mucho más costosos en comparación al método magnético.


Exploración magnética para fuentes termales

El método magnético contribuye a la localización de la isoterma de Curie, que debajo de áreas con actividad termal está elevada en comparación a otras áreas.




Comparación de los métodos magnético y gravimétrico

El método magnético de exploración tiene algunos aspectos en común con el método gravimétrico. Los dos métodos hacen uso de campos de potenciales, detectan anomalías causadas por variaciones en las propiedades de las rocas, que constituyen los primeros kilómetros de la superficie terrestre y los dos métodos tienen aplicaciones similares en la exploración petrolífera. A través de los datos gravimétricos se asigna densidades, a partir de los datos magnéticos se asigna susceptibilidades magnéticas y la imantación remanente a rasgos definidos por la sísmica. Combinando los resultados magnéticos, gravimétricos y sísmicos se puede obtener informaciones acerca de la litología, que son de alta importancia en la evaluación de proyectos de prospección petrolífera.

En lo que concierne la interpretación el método magnético es más complejo en comparación al método gravimétrico. La intensidad magnética tiene magnitud y dirección y depende de la susceptibilidad magnética y de la imantación remanente de la roca. La fuerza magnética puede atraer o repulsar algo. Los efectos magnéticos pueden ser causados por componentes de poca abundancia en una roca. En el caso del método gravimétrico la masa, que determina la gravedad, solo tiene magnitud y depende de la densidad. La fuerza gravitatoria es atractiva. Generalmente los efectos gravitatorios originan de los constituyentes principales de una roca.

linea 300

Contenido

Exploración Mineras

Apuntes - Geología
Contenidos Exploración Minera
1. Introducción
2. Remote Sensing
3. Geoquímica en prospección

4. Métodos sísmicos
5. Método magnético

5.1 Fundamentos teóricos
5.2 Magnetómetros
5.3 Los datos

6. Método gravimétrico
7. Métodos eléctricos
Índice
Bibliografía

a la página siguiente


Páginas de Geología
Apuntes Geología General
Apuntes Geología Estructural
Apuntes Depósitos Minerales
Colección de Minerales
Periodos y épocas
Figuras históricas
Citas geológicas
 Exploración - Prospección

 

Módulo de Citas
Depósitos
Depósitos en el Mundo
Depósitos en Chile
Depósitos en Atacama
Bibliografía Depósitos Minerales




 





No se permite expresamente la re-publicación de cualquier material del Museo Virtual en otras páginas web sin autorización previa del autor: Condiciones Términos - Condiciones del uso
a la página anterior

Exploraciones Mineras contenidos
Índice de palabras

a la página siguiente

 

Literatura:
SABINS, F.F. (1997): Remote Sensing. Principles and Interpretation. - 3th Edition : 494 p., Freeman (New York).

linea plateada

 

www.geovirtual2.cl

Apuntes y geología
Apuntes
Apuntes Geología General
Apuntes Geología Estructural
Apuntes Depósitos Minerales
Apuntes Exploraciones Mineras
Periodos y épocas
Módulo de referencias - geología
Índice principal - geología

Museo Virtual e Historia
Entrada del Museo virtual
Recorrido geológico
Colección virtual de minerales
Sistemática de los animales
Historia de las geociencias
Minería en dibujos  históricos
Fósiles en imágenes históricas
Autores de trabajos históricos
Índice principal - geología
---
Imágenes de Chile - Atacama

Región de Atacama
Región de Atacama / Lugares turísticos
Historia de la Región
Minería de Atacama
Geología de Atacama, Chile
El Ferrocarril
Flora Atacama
Fauna Atacama
Mirador virtual / Atacama en b/n
Mapas de la Región / Imágenes 3-dimensionales
Clima de la Región Atacama
Links Enlaces, Bibliografía & Colección de Libros
Índice de nombres y lugares

sitemap - listado de todos los archivos  - contenido esquemático - Informaciones sitio geovirtual.cl

 

 

geovirtual2.cl / contenido esquemático Apuntes  / Exploraciones Mineras
Barra: Exploraciones Mineras
© Susanne Griem-Klee & Wolfgang Griem, Copiapó - Región de Atacama, Chile
Actualizado: 3.9.2016
mail - correo electrónico - contacto


Todos los derechos reservados

No se permite expresamente la re-publicación de cualquier material del Museo Virtual en otras páginas web sin autorización previa del autor: Condiciones Términos - Condiciones del uso